本文目录一览:
【mongoDB】mongoDB的高可用、一致性
BASE理论是在一致性和可用性上的平衡,现在大部分分布式系统都是基于 BASE理论设计的,当然MongoDB也是遵循此理论的。
MongoDB 常用的优化措施有很多,以下是一些常见的优化措施: 合理设计数据库结构,避免使用冗余数据和重复数据。 创建合适的索引,以加速查询速度。 配置 MongoDB 的缓存大小,以提高写入性能。
MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包,方便各种语言的接入。
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构 非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
对于需要在短时间内完成MongoDB差异数据对比的场景来说,使用NineData是一种高效且易于使用的解决方案。NineData提供了一种高效且易于使用的MongoDB数据对比功能,可以帮助快速定位不一致的数据并节省大量时间和资源。
搭建MongoDB副本集&分片
keyfile 配置用于 MongoDB 节点间复制行为的密钥文件。replSet 为副本集设置一个名称。接下来我们创建一个用于所有实例的密钥文件。
功能如下:数据冗余:副本集可以确保副本结点与主结点数据的更新,以防止单个数据库的服务宕机造成数据丢失的问题。
所以需要提供物理备份的功能,本文主要整理MongoDB副本集通过磁盘快照的进行物理备份和恢复的方法。
虚拟机中副本初始化失败原因如下:IP错误引起MongoDB副本集初始化失败。PRIMARY与SECONDARY主机mongodb-keyfile文件内容不一致,导致在PRIMARY上添加副本集失败。备节点配置文件没有配置replSet,导致添加副本集失败。
MongoDB自动分片介绍
MongoDB的分片机制能够帮助你将你的数据库划分到多个服务器,通常在生产环境中可以将数据集划分到多个副本集中。但分片最好在数据库建立早期划分,因为一旦你的数据大于512GB那么分片划分就不是那么容易了。
MongoDB 的数据分块称为 chunk。每个 chunk 都是 Collection 中一段连续的数据记录,通常最大尺寸是 200MB,超出则生成新的数据块。
面向集合存储,容易存储对象类型的数据。在MongoDB 中数据被分组存储在集合中,集合类似RDBMS 中的表,一个集合中可以存储无限多的文档。(2)模式自由,采用无模式结构存储。
MongoDB的分片框架中有3个角色:1)Query Routers:路由 2)Config servers:元数据服务器 3)Shards:数据节点 接着是坐标系的定义:MongoDB可通过索引来获取相关对象的地址,成为“坐标系”。
自动处理碎片,以支持云计算层次的扩展性 支持RUBY,PYTHON,JAVA,C++,PHP等多种语言。
为什么MongoDB会丢数据
1、小数据的要求对于MongoDB和Hbase都没有影响,因为MongoDB和Hbase都是一种数据库,主要就是用于存储零碎的小数据。
2、mongoose 连接 MongoDB,但是查不出数据,可能有以下原因: 数据库连接失败。请检查您的数据库连接是否正确。 查询语句有误。请检查您的查询语句是否正确。 数据库中没有数据。请检查您的数据库中是否有数据。
3、您好,我来为您解你可以查一下,mongodb的bug,你插入保存以后需要调一下getlasterror(),否则MongoDB就不会在确认数据库写操作完成就返回了,不知道是不是这个原因。
为什么要用mongodb?
1、——MongoDB会自动处理故障转移。这能让你在维持相当高的写可用性的同时,拥有强一致性特性,这对一些用例来说非常重要。
2、◆用于对象及JSON数据的存储:Mongo的BSON数据格式非常适合文档化格式的存储及查询。自然,MongoDB的使用也会有一些限制,例如它不适合:◆高度事务性的系统:例如银行或会计系统。
3、缓存:由于性能很高,MongoDB也适合作为信息基础设施的缓存层。在系统重启之后,由MongoDB搭建的持久化缓存层可以避免下层的数据源过载。(3)大尺寸,低价值的数据。
4、可扩展性 MongoDB被用在一些规模庞大的环境中,FourSquare/Craiglist都在使用它。通过分片数据缩放处理理论上可实现更高的吞吐量。
mongodb切片坐标系定义
1、接着是坐标系的定义:MongoDB可通过索引来获取相关对象的地址,成为“坐标系”。