本文目录一览:
谈谈redis,memcache,mongodb的区别和具体应用场景
1、二者在使用场景中,存在一定的区别,这也主要由于二者在内存映射的处理过程,持久化的处理方法不同。MongoDB建议集群部署,更多的考虑到集群方案,Redis更偏重于进程顺序写入,虽然支持集群,也仅限于主-从模式。
2、Redis只能使用单线程,性能受限于CPU性能,故单实例CPU最高才可能达到5-6wQPS每秒(取决于数据结构,数据大小以及服务器硬件性能,日常环境中QPS高峰大约在1-2w左右)。
3、Redis跟memcache不同的是,储存在Redis中的数据是持久化的,断电或重启后,数据也不会丢失。
4、事务性系统适用场景:Redis 最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。
5、mongodb实现语言是 C++ ,协议是BSON、自定义二进制 而redis实现语言是 C/C++,协议是类Telnet。
谈谈mongodb,mysql的区别和具体应用场景
1、我能使用Mongodb的场景是:你不需要太多的事务和多表关联,那么使用Mongodb可以获得更大的性能提升。或者schema-free的使用场景。
2、比较mysql和mongodb应当从一下几个方面:数据库执行数据操作的性能 存储方式 适用环境 三个方面来比较。
3、默认情况下,MongoDB 更侧重高数据写入性能,而非事务安全,MongoDB 很适合业务系统中有大量 “低价值” 数据的场景。但是应当避免在高事务安全性的系统中使用 MongoDB,除非能从架构设计上保证事务安全。
对比MySQL,什么场景MongoDB更适用
1、对比MySQL,什么场景MongoDB更适用 MySQL 关系型数据库。 在不同的引擎上有不同 的存储方式。 查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。
2、默认情况下,MongoDB更侧重高数据写入性能,而非事务安全,MongoDB很适合业务系统中有大量“低价值”数据的场景。但是应当避免在高事务安全性的系统中使用MongoDB,除非能从架构设计上保证事务安全。
3、MongoDB适用于需要处理大量数据,特别是无结构或半结构化数据的场景,同时需要高性能和水平扩展能力的应用场景。 处理大量数据:MongoDB是一个面向文档的数据库,采用BSON(二进制JSON)格式存储数据。
4、使用场景:(1)网站数据:MongoDB适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。(2)缓存:由于性能很高,MongoDB也适合作为信息基础设施的缓存层。
5、● 游戏场景:使用MongoDB存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新。
6、AWS提供了两种形式的MySQL即服务,即Amazon RDS和Amazon Aurora。后者具有更高的性能,可以处理TB级的数据,更新副本的延迟时间更短,并且可以直接与Oracle数据库和SQL Server竞争。
mongodb是关系型数据库吗
不是。MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
不是,是非关系型数据库。是文档形式的数据库,每条记录是一个document。
目前,常见的数据库管理系统主要有Oracle、MySQL、SQLServer、MongoDB等, 这些数据库中,前三种均为关系型数据库,而MongoDB是非关系型的数据库。
MongoDB 是一个开源的、高可用性的、面向文档的 NoSQL 数据库。它是一个介于关系型数据库和非关系型数据库之间的新型数据库,它提供了类似于关系型数据库的语法和功能,同时又具有非关系型数据库的灵活性和可扩展性。
mongodb使用场景是什么?
1、MongoDB适用于需要处理大量数据,特别是无结构或半结构化数据的场景,同时需要高性能和水平扩展能力的应用场景。 处理大量数据:MongoDB是一个面向文档的数据库,采用BSON(二进制JSON)格式存储数据。
2、使用场景:(1)网站数据:MongoDB适合实时的插入,更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。(2)缓存:由于性能很高,MongoDB也适合作为信息基础设施的缓存层。
3、MongoDB使用分片技术对数据进行扩展,MongoDB能自动分片、自动转移分片里面的数据块,让每一个服务器里面存储的数据都是一样大小。
4、物联网场景:使用MongoDB存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析。 ● 视频直播:使用MongoDB存储用户信息、礼物信息等。
5、当写日志的服务节点越来越多时,日志存储的服务需要保证可扩展的日志写入能力以及海量的日志存储能力,这时就需要使用MongoDB sharding来扩展,将日志数据分散存储到多个shard,关键的问题就是shard key的选择。
6、◆高伸缩性的场景:Mongo非常适合由数十或数百台服务器组成的数据库。Mongo的路线图中已经包含对MapReduce引擎的内置支持。◆用于对象及JSON数据的存储:Mongo的BSON数据格式非常适合文档化格式的存储及查询。