这里是文章模块栏目内容页
mongodb数据大很慢(mongodb写入很慢)

本文目录一览:

mongodb插入效率会随集合数据增大而变慢吗

1、基本上MongoClient的连接方式插入数据的时间是Connection连接方式插入数据的4倍左右,当然数据量小的时候可能建立连接还有一些非相关的操作可能占的比重比较大,越到后来就越稳定。

2、你查看一下,如果数据文件大于系统内存,查询速度会下降几个数量级,因为mongodb是内存数据库。我以前测试过,1000万数据的时候没有索引情况下查询可能会几秒钟甚至更久。

3、mongodb 会比mysql快的多,原因是:首先是内存映射机制,数据不是持久化到存储设备中的,而是暂时存储在内存中,这就提高了在IO上效率以及操作系统对存储介质之间的性能损耗。

4、Mongo也支持比较高的写速率(当然这取决于硬件设备)。这比一般使用硬盘存储介质的关系数据库的存储效率要高很多。但是,非关系数据库会造成大量冗余数据,如果前期的系统设计很粗糙,后期的数据维护将会相当困难。

Mongodb的MapReduce很慢,有没有办法提高性能

1、基本上没有机会在RAM中进行reduce,相反,它将不得不通过一个临时collection来将数据写回磁盘,然后按顺序读取并进行reduce。使用多线程 MongoDB对单独的MR作业并不使用多线程——它仅仅对多作业使用多线程。

2、我们需要做的是把输入分成几块,通过各个块来加速一个MR作业。

3、MongoDB能够使用BSON,并将BSON作为数据的存储存放在磁盘中。当Client端要将写入文档,使用查询等等操作时,需要将文档编码为BSON格式,然后再发送给Server端。同样,Server端的返回结果也是编码为BSON格式再放回给Client端的。

4、MongoDB提供三种方式来执行聚合操作:aggregation pipeline、map-reduce function、single purpose aggregation methods。MongoDB 聚合操作是在数据处理管道的逻辑上建模的。

mongodb更新比较频繁,性能下降的厉害怎么办

1、范式化与反范式化 在项目设计阶段,明确集合的用途是对性能调优非常重要的一步。

2、对于速度比较慢的查询来说,它是最重要的性能分析工具之一。通过查看一个查询的explain()输出信息,可以知道查询使用了哪个索引,以及是如何使用的。

3、在短时间内完成 MongoDB 差异数据对比,可以采用以下方法: 使用专业的数据对比工具:市场上有一些专业的中间件工具,如 NineData,提供了一种高效且易于使用的 MongoDB 数据对比功能。

4、建立好合适索引,尽量使用更多的精确查询搭配模糊查询一起,不需要返回的字段要屏蔽,增大机器内存,使用固态硬盘,海量数据使用集群部署。

5、MongoDB通过在选举成功,到新Primary即位之前,新增了一个 catchup(追赶)操作来解决。即在节点获取投票胜利之后,会先检查其它节点是否有比自己更新的oplog,如果没有就直接即位,如果有就先把数据同步过来再即位。