本文目录一览:
如何配置MongoDB副本集
keyfile 配置用于 MongoDB 节点间复制行为的密钥文件。replSet 为副本集设置一个名称。接下来我们创建一个用于所有实例的密钥文件。
副本集的搭建的步骤为:同时启动多个mongod实例(可以在一台服务器上,也可以在不同的服务器上),然后在每个实例的配置文件中配置相应的配置项,最后启动实例后,登录并且在做一次配置即可。
下载 MongoDB 官方下载地址: http:// 本机是Windows 7 32位,故下载的是mongodb-win32-i386-zip,后续例程均是基于该版本数据库。
功能如下:数据冗余:副本集可以确保副本结点与主结点数据的更新,以防止单个数据库的服务宕机造成数据丢失的问题。
如何提高mongodb查询速度
1、对于速度比较慢的查询来说,它是最重要的性能分析工具之一。通过查看一个查询的explain()输出信息,可以知道查询使用了哪个索引,以及是如何使用的。
2、排除方式七:查看mongodb数据文件,看是否已经很大?经查看,总大小才64M,这比32位文件上限的2G来讲,可以基本忽略;排除方式八:连接字符串。
3、在MongoDB中我们将与主键没有直接关系的图书单独提取到另一个集合,用存储主键的方式进行关联查询。当我们要查询文章和评论时需要先查询到所需的文章,再从文章中获取评论id,最后用获得的完整的文章及其评论。
为什么MongoDB采用B树索引,而Mysql用B+树做索引
Mongodb和Mysql索引选型 1)首先两种数据库都选择平衡m叉树作为底层索引结构,因为平衡树m叉树是同种元素序列情况下的深度最小的m叉排序树。这可以减少m叉树元素查找的深度,从而提升平均查找效率。B树和B+树都是平衡m叉树。
MySQL支持的索引结构有四种:B+树,R树,HASH,FULLTEXT。B树是一种多叉的AVL树。B-Tree减少了AVL数的高度,增加了每个节点的KEY数量。其余节点用来索引,而B-树是每个索引节点都会有Data域。
一个是索引会出现性能问题,另外一个就是在一定的时间后,所占空间会莫明其妙地增大,所以要定期把数据库做修复,定期重新做索引,这样会提升MongoDB的稳定性和效率。
MongoDB如何优化查询性能?
1、通过查看一个查询的explain()输出信息,可以知道查询使用了哪个索引,以及是如何使用的。对于任意查询,都可以在最后添加一个explain()调用(与调用sort()或者limit()一样,不过explain()必须放在最后)。
2、在MongoDB中我们将与主键没有直接关系的图书单独提取到另一个集合,用存储主键的方式进行关联查询。当我们要查询文章和评论时需要先查询到所需的文章,再从文章中获取评论id,最后用获得的完整的文章及其评论。
3、排除方式七:查看mongodb数据文件,看是否已经很大?经查看,总大小才64M,这比32位文件上限的2G来讲,可以基本忽略;排除方式八:连接字符串。
4、优化 MongoDB 集群负载均衡:在实际生产环境中,数据访问热度和节点性能差异可能导致某些节点超载。
5、开发人员不用太关系这个);最后要说道一下Mongodb的查询,如果你的关系型数据库中之前有很多的多表连接查询(3张以上),则请不要尝试移植。
Mongodb的MapReduce很慢,有没有办法提高性能
1、基本上没有机会在RAM中进行reduce,相反,它将不得不通过一个临时collection来将数据写回磁盘,然后按顺序读取并进行reduce。使用多线程 MongoDB对单独的MR作业并不使用多线程——它仅仅对多作业使用多线程。
2、我们需要做的是把输入分成几块,通过各个块来加速一个MR作业。
3、MongoDB能够使用BSON,并将BSON作为数据的存储存放在磁盘中。当Client端要将写入文档,使用查询等等操作时,需要将文档编码为BSON格式,然后再发送给Server端。同样,Server端的返回结果也是编码为BSON格式再放回给Client端的。
4、MongoDB提供三种方式来执行聚合操作:aggregation pipeline、map-reduce function、single purpose aggregation methods。MongoDB 聚合操作是在数据处理管道的逻辑上建模的。
5、影响写性能 用户没写入一条数据,就会在对应索引生成一条索引KV,实现索引与数据的一一对应,索引KV数据写入Index索引文件过程加剧写入负载。 影响读性能 MongoDB内核查询优化器原理是通过候选索引快速定位到满足条件的数据,然后采样评分。
6、你需要更懂数据库 常用的数据库如MySQL,Sql Server、Oracle、DBMongoDB等;除去SQL语句的熟练使用,对于数据库的存储读取过程也要熟练掌握。