本文目录一览:
mongoDB应用篇-mongo聚合查询
1、如果我们在日常操作中,将部分数据存储在了MongoDB中,但是有需求要求我们将存储进去的文档数据,按照一定的条件进行查询过滤,得到想要的结果便于二次利用,那么我们就可以尝试使用MongoDB的聚合框架。
2、之前也说过,MongoDB数据库里面的数据是键值对形式,所以如果想要插入多条数据,可以这样写,也就是键值对之间用逗号隔开。如果想要查询数据,则可以使用db.集合名.find()语句来查询。
3、在上一篇 mongodb Aggregation聚合操作之$unwind 中详细介绍了mongodb聚合操作中的$unwind使用以及参数细节。本篇将开始介绍Aggregation聚合操作中的$count操作。说明:查询展示文档数量的总数。
【mongoDB】mongoDB的高可用、一致性
BASE理论是在一致性和可用性上的平衡,现在大部分分布式系统都是基于 BASE理论设计的,当然MongoDB也是遵循此理论的。
MongoDB 常用的优化措施有很多,以下是一些常见的优化措施: 合理设计数据库结构,避免使用冗余数据和重复数据。 创建合适的索引,以加速查询速度。 配置 MongoDB 的缓存大小,以提高写入性能。
MongoDB的主要客户端是可以交互的js shell 通过mongo启动,使用js shell能使用js直接与MongoDB进行交流,像使用sql语句查询mysql数据一样使用js语法查询MongoDB的数据,另外还提供了各种语言的驱动包,方便各种语言的接入。
MongoDB已经在多个站点部署,其主要场景如下:1)网站实时数据处理。它非常适合实时的插入、更新与查询,并具备网站实时数据存储所需的复制及高度伸缩性。2)缓存。由于性能很高,它适合作为信息基础设施的缓存层。
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构 非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
高性能:MongoDB 使用其独特的内存存储和查询技术,可以提供极高的性能。这使得 MongoDB 成为高性能数据存储解决方案的首选。灵活性:MongoDB 支持多种编程语言和框架,可以方便地应用于不同的应用程序中。
如何在Mongodb集合中统计去重之后的数据
1、索引支持在MongoDB中高效地执行查询。如果没有索引,MongoDB必须执行全集合扫描,即扫描集合中的每个文档,以选择与查询语句匹配的文档。
2、如果想要查询出特定的数据,则可以在find里面添加键值对作为条件。比如我要查询name为mimi的数据则可以这样写。执行语句之后,就可以查询到对应的数据了。集合中包含有name:mimi的数据只有一条,所以就显示一条。
3、看一个官网的例子:stage 1:通过match命令筛选出目标文档。stage 2: 然后将筛选出来的文档再通过group命令进行分组,最后通过sum命令对分组后的数据进行累加操作。这个概念相对复杂,以下仅为个人理解。