本文目录一览:
Redis使用bitmap、zset、hash、list等结构完成骚操作?
1、实现方式:Redis实现布隆过滤器——借鉴Guava的BF算法:SpringBootx中使用Redis的bitmap结构(工具类)注意:bitmap使用存在风险,若仅仅计算hash值,会导致bitmap占用空间过大。一般需要对hash值进行取余处理。
2、String是redis中最基础的数据结构,你可以把它用作缓存最基础的kv(key-value)类型的缓存(value最大为512MB),只需要把需要缓存的对象进行string的编解码即可。
3、String 字符串 字符串类型是 Redis 最基础的数据结构,首先键都是字符串类型,而且 其他几种数据结构都是在字符串类型基础上构建的,我们常使用的 set key value 命令就是字符串。
Redis实现限流策略
其实限流涉及的最主要的就是滑动窗口,上面也提到1-10怎么变成2-11。其实也就是起始值和末端值都各+1即可。而我们如果用Redis的list数据结构可以轻而易举的实现该功能。
基于Redis的setnx的操作,给指定的key设置了过期实践。基于Redis的数据结构zset,将请求打造成一个zset数组。基于Redis的令牌桶算法,输出速率大于输入速率,就要限流。
一般就会在服务器端将用户信息和访问信息做下关联,以此来实现访问频次限制。通常大家都会选择 Redis 来作为此中间件的存储介质。
首先创建令牌桶数据模型 reSync函数同样是为了解决令牌桶数据更新问题,在每次获取令牌之前调用,这里不多介绍 expires函数计算redis数据过期时间。
个人觉得,项目不大的,维护成本不高的话,可以采用 直接使用 redsi-cell ,否则可以考虑细粒度的控制到每个服务节点去限流,配合相应的负载均衡策略去实现。以上为个人理解,仅供参考。
经典面试题——让你设计一个限流的系统怎么做?
1、最简单的限流算法就是维护一个计数器 Counter,当一个请求来时,就做加一操作,当一个请求处理完后就做减一操作。如果这个 Counter 大于某个数了(我们设定的限流阈值),那么就开始拒绝请求以保护系统的负载了。
2、计数器算法(固定窗口):计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略,下一个周期开始时,进行清零,重新计数,实现简单。计数器算法方式限流对于周期比较长的限流,存在很大的弊端,有严重的临界问题。
3、首先,应该设计出实现目标系统的几种可能的方案。概要设计的另一项主要任务就是设计程序的体系结构,也就是确定程序由哪些模块组成以及模块间的关系。